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Abstract—Accurate spike sorting is important for neuroscien-
tific and neuroprosthetic applications. The sorting of spikes de-
pends on the features extracted from the neural waveforms, and a
better sorting performance usually comes with a higher sampling
rate (SR). However for long duration experiments on free-moving
subjects, the miniaturized and wireless neural recording ICs
are the current trend. The compromise on sorting accuracy is
usually made for the low power consumption with a lower SR.
In this paper, the VLSI architecture of cubic spline interpolation
is proposed to improve the power-accuracy tradeoff for the spike
sorting microsystems. The window-based interpolation schedule,
event-triggered processing, and two-step interpolation scheme are
applied to save the memory and computation. 0.04 μW/channel
is finally achieved after the implementation in 90nm process.

I. INTRODUCTION

Spike sorting is an important tool to study neural activities

and brain functions in neuroscience research [1]. It is also

a key component in cortically-controlled neuroprosthetics for

spinal cord injured patients [2]. Robust sorting performance is

an important issue for these applications [3]. The results of the

neural decoding is less significant without an accurate spike

sorting. On the other hand, making miniaturized and wireless

microsystems for the experiments on free-moving subjects is

the current design trend [4], [5]. For these resource-constrained

systems, the design issues for low power consumption is

usually considered and may result in the compromise on

sorting performance.

One of the design issues for the power and accuracy

tradeoff is the sampling rate in the neural recorder. Since

the classification of spikes depends on the features extracted

from the spike waveforms, a better sorting performance usually

comes with a higher sampling rate. However the high sampling

rate leads to a larger power consumption for the recording,

processing, and wireless telemetry circuitries, which may not

be feasible for the applications. A sampling rate of 100 k

sample per second (sps) is suggested in [6] for an excellent

performance. However the current microsystems are usually

designed with 20–40 ksps sampling rates [4].

In this paper, the cubic spline interpolation hardware is

designed to improve the tradeoff between power and accuracy

for spike sorting microsystems. Since most spike energy is

under 6.25kHz [6], after the waveform reconstruction through

the interpolation, the sorting performance with 100ksps signal

resolution could be achieved even after a low sampling rate

and low power consumption for the neural recorder. The

remainder of this paper is organized as follows. The prelim-

inary information about the spike sorting microsystem along

with the cubic spile interpolation is introduced in Section II.
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Fig. 1. The hardware operation of the neural recording and spike sorting.
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Fig. 2. The improvement of neuron cluster separation after the interpolation.
The original neural signals are sampled at 12.5 ksps as shown in (a). For (b)
and (c), the spike waveforms are re-aligned after the up-sampling to 25 ksps
and 100 ksps with the cubic spline interpolation.

Section III describes the proposed VLSI architecture of cubic

spline interpolation, and Section IV shows the implementation

results. Finally, Section V concludes this work.

II. SPIKE SORTING AND CUBIC SPLINE INTERPOLATION

A. Spike Sorting, Sampling Skew, and Interpolation

During the extra-cellular neural recording, an electrode

usually records the signals from multiple surrounded neurons.

Spike sorting is a kind of signal processing tool to differentiate

which spike corresponds to which of these close-by neurons

from the waveform. Figure 1 shows the microsystem for the

neural recording and the spike sorting hardware. For the spike

sorting, the extracted features of spikes are correlated to the

shapes of the spike waveforms. As a result any waveform dis-

tortion may have great influence on the sorting performance.

Sampling skew is one of the main issues resulting the wave-

form distortion. During the neural recording, the firing of the

action potentials can hardly be synchronized with the sampling

of the neural signals. Different time skews corresponding to

the neural firing time are sampled for different spikes, and

result in the variation of the spike waveforms as well as the

degradation of the sorting performance.

The spikes have the most energy under 6.25 kHz. According

to the Nyquist-Shannon sampling theory, it should be feasible

to reconstruct the 100 ksps spike waveforms through the
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Fig. 3. The proposed on-chip spike sorting system with interpolation. SRDET , SRALIGN , and SRFE&CLA indicate the sampling rates of the processed data in
spike detection, alignment, and feature extraction along with classification stages.

interpolation if the sampling rate in the AFNRC is higher

than 12.5 ksps. An uncompromised spike sorting performance

may thus be achieved even with a low sampling rate. Figure 2

shows the improvement of the neuron separation by means

of the interpolation. The neural signals are originally sampled

at 12.5 ksps. Then the spike waveforms are interpolated to 25

ksps and 100 ksps in Fig 2 (b) and (c). After the interpolation,

the waveform can be re-aligned with less error caused by the

sampling skew. This improves the separation of neuron clusters

on the feature space and leads to a better sorting performance.

B. Proposed On-chip Spike Sorter with Interpolation [7]

The cubic spline interpolation is used in the proposed spike

sorting microsystems to improve the power-accuracy tradeoff.

Since the spike sorting is performed after the reconstruction of

the high-resolution neural signals, two kinds of improvement

can be expected. With a fixed sampling rate and power

consumption for AFNRC, our digital system achieves a higher

sorting accuracy after the interpolation. With an expected

sorting accuracy, the AFNRC may consume lower power con-

sumption with a lower sampling rate because the compensation

can be made by the interpolation. As for the total power

consumption, although the usage of the interpolation may

increase the power of DSSP, it would release the requirement

of the high sampling rate of AFNRC in some respects. The

power consumed by the AFNRC chips [4] is about an order

larger than the state-of-the-art DSSP designs [5], this power

tradeoff between the AFNRC and DSSP would finally result

in a smaller total power.

The DSSP may consume larger power after the interpo-

lation. This penalty can be minimized if the high signal

resolution is only utilized at the critical step of the spike

sorting. Figure 3 shows the proposed system. The DSSP part

is divided into three sections with the specific purposes. First

the spike detection usually uses the energy detector and does

not need detailed waveform information. Therefore the SRDET
along with the SRAFNRC should be set as low as possible in

order to save power. Afterwards, the interpolation is performed

and the detected spikes are aligned with a higher SRALIGN in

order to reduce the sampling skew and improve the ability of

neuron separation. After the alignment, the feature extraction

and classification, the most computationally intensive parts of

spike sorting, are operated after the down-sampling. Since

the sampling skew is minimized during the high-resolution

alignment, there should be limited waveform distortion after

the down-sampling and the sorting performance is kept with

lower power consumption. For the detailed accuracy analysis

about the spike sorting for the proposed system, please refer

to [7].

C. Algorithm Review of Cubic Spline Interpolation

In this subsection, we will review the algorithm of cubic

spline interpolation before the hardware implementation. Con-

sider a collection of n data samples, y1, y2, ... and yn, to

perform the up-sampling with the cubic spline interpolation, n-

1 piecewise third degree polynomial functions are constructed

between the neighboring pairs of data points, or segments. The

polynomial curve fitting for each segment can be represented

by

Yi(t) = ai +bit + cit2 +dit3 (1)

where t ∈ [0,1] and i = 1,2, ...,n− 1. The cubic spline con-

strains the function value, first derivative and second deriva-

tive. The routine must ensure that Yi, Y ′
i and Y ′′

i are equal at

the interior nodes for the adjacent segments. The criteria are

summarized as follows.
Yi(0) = yi = Yi−1(1)
Y ′

i (0) = Y ′
i−1(1)

Y ′′
i (0) = Y ′′

i−1(1)
(2)

To solve the coefficients of the polynomials, a symmetric

tridiagonal matrix can be derived by rearranging all these

equations of the criteria:⎡
⎢⎣
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⎤
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Note that Di indicates the function’s first derivative, or Y ′
i (0).

The natural spline boundary condition is used here, and

Y ′′
1 (0) and Y ′′

n (1) is set to zeros. Di can be solved by the

multiplication of the inverse of the square matrix in eq. 3.

Then the piecewise polynomial functions can be derived

by substituting the data points and first derivatives into the

following equations.
ai = yi
bi = Di
ci = 3(yi+1 − yi)−2Di −Di+1

di = 2(yi+1 − yi)+Di +Di+1

(4)

Finally the interpolated samples in a segment can be calculated

by substituting the corresponding numbers of t into the eq. 1.

For example, to up-sample the data by a factor of four, 1/4,

1/2, and 3/4 are used. For detailed mathematical derivation

from eq. 1 and eq. 2 to eq. 3 and eq. 4, please refer to [8].

III. VLSI ARCHITECTURE DESIGN

A. Window-based Interpolation Schedule

Low power consumption and miniaturized area are two

primary issues for spike sorting microsystems. Unlike the

processing in the software system, it is not feasible to store

a large amount of neural data and perform cubic spline

interpolation afterwards. A large memory will be required

consuming significant power and area. The time delay to
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Fig. 4. The proposed window-based interpolation schedule.

collect the neural samples is not allowed under the on-the-

fly processing requirement.

In order to minimize the memory requirement and achieve

the on-the-fly processing, the hardware is designed to perform

the interpolation window by window for the neural signals

with a repeated and regular schedule. The original signals are

pushed into the hardware sample by sample, and the first-in

first-out (FIFO) registers would be used to store a window of

the most recent neural samples. The cubic spline procedure

described in Sec. II-C is repeatedly performed for the data

window every time when a new original sample is input. For

each iteration, the matrix operation of eq. 3 is first solved, and

the coefficients of the third order polynomials are calculated

as eq. 4. Since only a relatively small data window is involved

for one iteration, the interpolated samples are more sensitive to

the boundary conditions at two ends of the window. Therefore,

only the polynomial in the middle segment of the window is

adopted to generate the interpolated samples in each iteration.

The entire waveform can be interpolated by repeating this

procedure for the consecutive and overlapped windows of

neural signals.

Under this schedule, there is a trade-off between the inter-

polation accuracy and the memory size regarding the length of

the data window. For each iteration, if more original samples

are involved for the interpolation, the polynomial in the most

middle segment of the window is less influenced by the

boundary conditions. The larger memory is the penalty in

this case. For the optimization, according to the simulation,

the window with six samples has the minimized memory size

without a noticeable error propagated from the two boundaries.

Figure 4 illustrates the proposed window-based schedule.

The light orange line (y4, y5, y6, ...) represents the original

neural samples while the deep blue line (y10.1, y10.2, y10.3,

...) represents the interpolated neural samples. One window

involves six original samples, and we would like to up-sample

the signals by eight (i.e. from 12.5 ksps to 100 ksps) in this

example. As shown in Fig. 4 (b), in the first iteration, the

original samples of y2 to y7 are used. The interpolated samples

of y4.0 to y4.7 are output. In the next iteration, y8 is pushed

into the FIFO, and y5 to y8 are used to generate y5.0 to y5.7.

B. Event-triggered Interpolation Scheme

Since the neurons do not keep firing the action potentials

all the time, the event-triggered processing is proposed to

reduce the computation complexity and the corresponding

power consumption. Here the event is defined as the coming
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Fig. 5. The proposed two-step interpolation scheme with down-sampling.
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Fig. 6. The proposed architecture performing the cubic spline interpolation,
alignment, and down-sampling operations for the system shown in Fig. 3.

of the spike. In the proposed spike sorting microsystem, the

interpolation is performed after the spike detection. Since the

signal characteristics are extracted only for the neural events,

the interpolation engine can be turned on after the detection

of the spikes. Compared to the always-on interpolation, this

scheme can save morn than 95% computation complexity if

the firing rate of the neurons is about 20 spikes per second.

C. Two-stage Interpolation with Downsampling

In the proposed system, down-sampling is performed after

the interpolation and alignment. Some of the interpolated

samples are not used for the subsequent processing tasks and

will be discarded. Based on this observation, the two-stage

interpolation is proposed to further reduce the computation

and the corresponding power consumption. The idea is to

firstly perform the interpolation locally only for the alignment

regions in order to find the new alignment point. After the

re-alignment, referred to the new alignment point, only the

corresponding samples that will be used after the down-

sampling are interpolated for the entire spike waveform.

Figure 5 shows an example of the two-step interpolation.

In this example, the system does interpolation for the raw

signals by the factor of eight, and then performs the down-

sampling by the factor of eight as well after the re-alignment

according to the peak of the spike. In the first step as shown

in Fig. 5 (a), only two segments beside the peak, the original

alignment point, of the spike are interpolated. The new peak

as the new alignment point is refined with a higher sampling

rate. In the second step, since the new alignment point is found,

and we can know the exact locations of the samples that will

be required after the down-sampling. Therefore, the hardware

performs the interpolation only for those useful samples as

shown in Fig. 5 (b). In this example, only 33% of samples

are finally interpolated compared to the traditional case that

performs the interpolation for the whole spike waveform.

D. Final Architecture

Figure 6 shows the architecture performing the interpola-

tion, alignment, and down-sampling operations for the system
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Fig. 7. The cyclic schedule of the proposed architecture for the example shown in Fig. 5.

shown in Fig. 3. This architecture can support the proposed

window-based interpolation schedule as well as the event-

triggered and two-step interpolation schemes. After the spike

detection, the detected spikes of multiple channels are fed

into the “Queue SRAM for Original Spikes.” When the queue

is empty, the FSM keeps waiting for the next event, and

the processing units (PUs) are turned off by a gated clock.

If there are spikes in the queue, the hardware performs the

interpolation for them in a FIFO fashion. The outputs are the

spike waveforms aligned and down-sampled according to the

hardware configuration. Several configurations are designed

and can be programmed by the users. The spikes are allowed

to be aligned according to their peaks, slopes, or purely points

crossing the threshold value defined for the spike detection.

The up-sampling and down-sampling factors can be set to two,

four, or eight separately.

The PUs and the FIFO register array in Fig. 6 are designed

to support the window-based cubic spline interpolation. Six-

pipelined FIFO registers are used to store a window of six

original samples, yi+3, yi+2, ... and yi−2, loaded from the queue

SRAM. The curve between yi and yi+1 is the targeted segment

to be interpolated. As for the processing, the first-stage PUs

calculate Di and Di+1 by solving the eq. 3. Afterwards, the

second-stage PU derives the coefficients of ai, bi, ci, and

di according to eq. 4. Then, the last-stage PU generates the

interpolated samples by substituting the corresponding values

of t into eq. 1. The red words in the Fig. 6 denote the example

of the first iteration in Fig. 4 (b). The inputs are y2 to y7 while

the outputs are y4.0 to y4.7 if t is set to 0, 1/8, 2/8, ... and

7/8 in a sequential order.

The FSM controls the SRAM and PUs with the two-step

interpolation scheme. The cyclic schedule is shown in Fig. 7.

This example is for the case shown in Fig. 5. The first step

refines the alignment point for spikes in a higher sampling rate.

After the six cycles to load the window of original samples,

the FSM generates all possible values for “t,” and the inter-

polation is thoroughly performed for two segments centered

by the original alignment point. The decision unit checks the

new alignment point on-line after the interpolation PUs and

forwards the result to the FSM. In the second step, only the

samples required after the down-sampling are interpolated for

the entire spike. The FSM generates the corresponding “t”
value according to the new alignment point to produce the

samples required after the down-sampling.

IV. IMPLEMENTATION RESULTS

The proposed architecture is implemented in verilog and

synthesized with UMC 90 nm 1P9M low-leakage CMOS

process. Table I summarizes the implementation results. The

hardware requires 0.23 mm2 area including 27.7k logic gates

TABLE I
IMPLEMENTATION RESULTS IN 90 NM CMOS PROCESS

Process 90 nm 1P9M CMOS
Supply Voltage 1.0 Volt
Maximum Operation Frequency 20 MHz

Core Area 0.16 mm2

Power Consumption 5.60 μW (@1MHz,1Volt)

Computation Capability
Realtime processing for 128 channels,

20 spikes
channel×sec , and 45 samples

spike (@1MHz)

and a 11.5kb SRAM. The SRAM is able to queue 32 spikes

with 45 samples/spike in maximum and 8 bits/sample. The

hardware can handle about 2600 spikes per second in a

realtime with 1MHz operation frequency under the worst case

of 45 samples per spike and upsampling by a factor of 8

without any down-sampling. This specification should be able

to perform on-line processing for 128 channels with the spike

firing rate of 20 spikes/channel. The corresponding power

consumption is 5.6 μW in the worst case. The average power

consumption for each channel is 0.04 μW. This overhead is

almost negligible compared to the saving in AFNRC and other

parts of DSSP utilizing the traditional processing procedure

without the interpolation.

V. CONCLUSION

In this paper, the on-chip spike sorting systems with cubic

spline interpolation is proposed to strike the tradeoff between

the sorting accuracy and power consumption. In the VLSI

hardware for on-line cubic spline interpolation, the window-

based processing schedule is designed to save the memory

while the event-triggered and two-step interpolation schemes

are proposed for the computation reduction. 0.04 μW/channel

power is finally required after the implementation in 90nm

CMOS process.
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